Strategy to Capitalize on Generative AI in Business

Featured

The integration of Generative AI (GenAI) in businesses presents both challenges and opportunities. This article outlines strategies for deploying GenAI, ensuring compliance, managing risks, and facilitating monetization in a rapidly evolving technological environment.

A.- Understanding GenAI Challenges

Key obstacles to GenAI integration include:

  • Lack of incentives: Without apparent benefits, employees might resist new AI tools.
  • Ignorance of AI’s potential: Misunderstanding what AI can do often leads to its underuse.
  • Fear of job displacement: Concerns about AI replacing jobs or empowering junior employees can cause resistance.
  • Restrictive policies: Conservative approaches may stifle AI adoption, pushing employees to seek alternatives outside the organization.

B.- Strategic Integration of GenAI

  • Identify High-Value Applications: Target roles and processes where GenAI can boost efficiency, such as data analysis and customer service, ensuring immediate impact and wider acceptance.
  • Educate and Incentivize Employees: Develop training programs coupled with incentives to foster AI adoption and proficiency.
  • Risks and Contingency Planning: Assess and manage technological, regulatory, and organizational risks with proactive safeguards and strategic planning for potential issues.
  • Incremental Implementation: Start with pilot projects offering high returns, which can be expanded later, showcasing their effectiveness and ROI.

C.- Monetization Strategies

  • Enhance Productivity: Apply GenAI to automate routine tasks and enhance complex decision-making, freeing up resources for more strategic tasks, thereby reducing costs and improving output quality.
  • Develop New Products and Services: Utilize GenAI to create innovative products or enhance existing ones, opening up new revenue streams like AI-driven analytics services.
  • Improve Customer Engagement: Deploy GenAI tools like chatbots or personalized recommendation systems to boost customer interaction and satisfaction, potentially increasing retention and sales.
  • Optimize Resource Management: Use GenAI to predict demand trends, optimize supply chains, and manage resources efficiently, reducing waste and lowering operational costs.

D.- Conclusion

Successfully integrating and monetizing GenAI involves overcoming resistance, managing risks, and strategically deploying AI to boost productivity, drive innovation, and enhance customer engagement. By thoughtfully addressing these issues, companies can thrive in the era of rapid AI evolution.

The EU AI Act: An Overview

Featured

Set to take effect in stages starting summer 2024, the AI Act is poised to become the world’s first comprehensive AI law. It aims to govern the use and impact of AI technologies across the EU, affecting a broad range of stakeholders including AI providers, deployers, importers, and distributors.
🔹𝐊𝐞𝐲 𝐏𝐫𝐨𝐯𝐢𝐬𝐢𝐨𝐧𝐬 & 𝐈𝐦𝐩𝐚𝐜𝐭: The Act categorizes AI systems into prohibited, high-risk, and general-purpose models, each with specific compliance requirements. Notably, high-risk AI systems face stringent obligations, impacting sectors from employment to public services. The Act also introduces bans on certain AI practices deemed harmful, like emotion recognition in workplaces or untargeted image scraping for facial recognition.
🔹𝐂𝐨𝐦𝐩𝐥𝐢𝐚𝐧𝐜𝐞 & 𝐏𝐞𝐧𝐚𝐥𝐭𝐢𝐞𝐬: Compliance will vary by the nature of AI usage with penalties for non-compliance reaching up to €35 million or 7% of annual worldwide turnover. The AI Act also incorporates and aligns with existing EU regulations like GDPR, requiring businesses to assess both new and existing legal frameworks.
🔹𝐓𝐢𝐦𝐞𝐥𝐢𝐧𝐞 𝐟𝐨𝐫 𝐈𝐦𝐩𝐥𝐞𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧: The AI Act will phase in its provisions, with most obligations impacting businesses after a two-year period post-law enactment.
🔹𝐒𝐭𝐫𝐚𝐭𝐞𝐠𝐢𝐜 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬: Entities involved in AI need to develop robust governance frameworks early to align with the Act’s requirements. As AI technologies and legal standards evolve, staying informed and adaptable is crucial.
🔹𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐞𝐫𝐬𝐩𝐞𝐜𝐭𝐢𝐯𝐞: Unlike the EU’s comprehensive approach, the UK is currently opting for a non-binding, principles-based framework for AI regulation. This divergence highlights varying international stances on AI governance.
For businesses and professionals involved in AI, the incoming AI Act represents both a challenge and an opportunity to lead in responsible AI deployment and innovation.

More on: https://bit.ly/4bN8gM0

𝐹𝑜𝑙𝑙𝑜𝑤 𝑚𝑒 𝑜𝑛 𝑋: @𝑀𝑖𝑔𝑢𝑒𝑙𝐶ℎ𝑎𝑚𝑜𝑐ℎ𝑖𝑛

EU Sets Global Precedent with Comprehensive AI Act

Featured

The European Union has just reached a landmark agreement on a comprehensive AI law, poised to set a global precedent. This new regulation, known as the AI Act, is one of the first of its kind and aims to manage the rapidly evolving AI technology with a risk-based approach.

Key highlights of the AI Act include:

  • Risk-Based Regulation: The AI Act will categorize AI systems based on their level of risk, with the most stringent regulations applied to high-risk models. This includes popular large AI models like ChatGPT.
  • Enforcement Across EU: All 27 member states will be involved in enforcing the law, with certain aspects taking up to 24 months to become effective.
  • Global Impact: The legislation is expected to influence AI development worldwide, serving as a model for other countries.
  • Comprehensive Prohibitions: The AI Act will ban AI use for social scoring, manipulating human behavior, and exploiting vulnerable groups. Strict restrictions are also placed on facial recognition technology and AI systems in the workplace and educational institutions.
  • Significant Fines for Non-Compliance: Companies that fail to comply with these new rules could face fines of up to €35 million or 7% of global revenue.
  • Two-Tier Approach for AI Models: The Act establishes transparency requirements for general-purpose AI models and stronger requirements for those with systemic impacts.
  • Encouragement for Innovation: Despite strict regulations, the Act aims to avoid excessive burdens on companies, promoting a balance between safeguarding AI technology use and encouraging innovation.
  • Future Perspectives: Looking ahead, this legislation is a crucial step in shaping the global AI regulatory landscape, with implications for AI legislation and automated decision-making rules in other jurisdictions, including Canada, the United States, and beyond.

The EU AI Act is much more than just a set of rules; it’s a catalyst for EU startups and researchers to lead in the global AI race. With this act, the EU becomes the first continent to establish clear rules for AI use, potentially guiding future global standards in AI regulation.

More on: https://bit.ly/486f0n3

My new publication: “Public-Private Partnership in Energy Infrastructures: Experiences in Latin America”

Featured

Energy infrastructures in Latin America deserve a particular study with regard to Public-Private Partnerships (PPPs). Its different regulatory frameworks and degrees of institutional and operational maturity, make them to have a unique map of risks, policies and best practices. My publication on “PPPs in the Energy Infrastructures: experiences in Latin America” thus is proposed. The demographic increase and the economic growth of the Latin America countries emphasize the need for large investments in infrastructure to reduce the gap, which are also linked to their plans for sustainable development, climate action and interconnection to the infrastructures of the region (for example, electrical networks, gas pipelines and gasification terminals), and the regional energy markets. It is expected that the Public-Private Partnerships can funnel these investments. To do this, governments must create an environment in which the private sector can grow, by developing transparent regulatory frameworks. These reforms should gain the confidence of investors in these countries, which now compete with the other countries in a globalized world, to attract Foreign Direct Investment (FDI) to their energy markets. All this leads to reforms in each country in order to establish a more attractive environment to do business. A new field of opportunities opens up, driven by the national and international expansion plans of the private sector, and the search for better returns by the large investment funds in a context of low interest rates. In this scenario, the International Financial Institutions (IFI) must continue supporting infrastructure development.

Publication available on http://www.scioteca.caf.com/handle/123456789/1225

Captura

My book “Internationalization, Sustainable Development and Renewable Energy: Latin America”.

Featured

The book makes a multidisciplinary analysis (trade, electricity market, sustainable development, regulation, technology, market agents, investments and financing) of the renewable energy sector in Latin America.

The work starts with an introductory chapter presenting the need for internationalization of the renewable energy sector, which has a natural development market in Latin America. It then shows the needs, threats and opportunities of the Latin American Electricity Markets. It subsequently proceeds to analyse the sustainable development question in the energy sector, which allows us to enter into the issues associated with climate change and univWIP Cover Frontal Resized ENersal access to energy, focusing the analysis on Latin America. From here, the job carries out a critical study of the different renewable energy support mechanisms in the region. Afterwards, it studies the national R&D programs. The writing continues with the agents of the market and the roles and issues they find in their value chain within the region. From it, the book introduces the subject of investment, uncovering the ultimate problem, as well as the origin and destination of the investment flows that Latin America has received in renewable energy. Before finalizing, it analyses the financial instruments used for investment in renewable energy. Finally, the work ends with two real business cases of investment in power plants, which are financially modelled (Project Finance and Project Bonds). As a final conclusion, the writing highlights business opportunities, obstacles and solutions, all influencing the development of renewable energies in the region.

“The book is a vivid example of the great importance of the coordination among different sectors and areas (e.g. financial, monetary, fiscal, political, economic, business, technological, social, etc.), which have different cycles and operations, in order to face the major challenges of mankind today.”

Available now on Amazon here

Follow me on twitter: @MiguelChamochin

Your AI Is Real-Time. Your Data Operating Model Isn’t (Yet).

Let’s be honest: many of us are trying to run 2025 AI ambitions on 2010 data habits. Nightly batches, opaque KPIs and committee-driven governance don’t survive contact with agents, RAG and copilots.

The more I work with transformation leads, the more I see two patterns emerge again and again:
1 Real-time velocity and semantically-rich data are no longer optional.
2 Federated production + centralized semantics is the only model that really scales.

This forces a redesign of the Data Operating Model (DOM):

  • Instead of “we have a data lake, we’re fine”, we need an event driven + streaming + semantics fabric.
  • Events, not just ETL.
  • A semantic layer where metrics, dimensions and policies live once and are reused everywhere.
  • RAG and agents consuming governed semantics and live APIs, not random tables.

And the “data mesh vs central model” wars? They’re a distraction. Data mesh delivers measurable outcomes.

What actually works is:

  • Federated production: domains own their data/real-time data products.
  • Centralized semantics: a small central team owns the shared language of the business, metrics and the policies around it.
  • Governance becomes computational: contracts, lineage and rules in code, not PDFs nobody reads.
  • Semantic layers are becoming the governance firewall, resolving data chaos. The semantic layer emerges as the critical “universal translator” between raw data and analytical/AI systems.
  • Data/AI/Analytics Architecture Convergence on Six Pillars: (1) Ingest/Stream, (2) Prepare/Transform, (3) Define/Model (semantic layer), (4) Store/Persist, (5) Integrate/Orchestrate, (6) Deliver/Share. The “Define/Model” stage—semantic layers + metadata management—is the control point for AI governance.

If I had to prioritise the next 12–18 months in a DOM, I’d push for three moves:
Stand up 3–5 domain teams with clear P&L-linked data products.
Create a semantic council with the authority to say “no” to broken KPIs and unsafe policies.
Fund based on outcomes: latency, reliability, AI use-case adoption and reuse of shared semantics.

The hard question is “where do we start federating ownership without losing a single source of truth on meaning and controls”?

I’d love to learn from others here:
Where is your DOM actually stuck today — events, semantics, domain ownership, or governance?

I Just Analyzed the Hyperscalers’ Agent Platforms. Here’s What Shocked Me

I’ve been deep-diving into what AWS, Azure, and Google are actually building for AI agents—and I’ll be honest, there’s a fundamental shift happening in how we’ll build autonomous systems. The three hyperscalers are making radically different bets on the future of work.

The Reality Check

All three major hyperscalers—AWS, Microsoft Azure, and Google Cloud Platform—provide full-stack solutions encompassing orchestration, deployment, security, observability, and integration capabilities. The choice between platforms increasingly depends on existing enterprise infrastructure, specific framework preferences, required runtime characteristics, and ecosystem integration needs rather than fundamental capability gaps.

When I first examined AWS AgentCore, I thought “this is impressive infrastructure.” The most mature marketplace ecosystem. The deepest tooling, built on 15+ years of cloud services. Eight-hour runtimes, isolated microVMs, seven integrated services. Then I realized—they’re not just building faster AI. They’re building systems that can actually think and act over extended periods.

Azure took a different path. They’re saying: “Most enterprises live in the Microsoft 365 ecosystem. Let’s embed agents there with built-in identity management and multi-agent orchestration.” Smart. Pragmatic. Different.

Google’s playing an interesting game. They’ve released the Agent Development Kit with persistent memory and an open protocol called A2A. Translation? They’re betting that agent interoperability and a framework-agnostic approach are the real competitive advantages.

Why This Matters for You

The marketplace is projected to hit $163 billion by 2030, with agents representing $24.4 billion. But numbers don’t tell the real story.

What matters is this: companies building internal agent marketplaces—treating agents as managed products with governance frameworks—are quietly pulling ahead. They’re not running scattered pilots anymore. They’re deploying reusable agents as organizational assets.

Most enterprises? Still stuck asking “should we build an agent?” Meanwhile, forward-thinking organizations are asking “how do we govern and orchestrate dozens of them?”

The Three Philosophies

AWS is betting on depth and runtime longevity. Azure is betting on ecosystem integration. Google is betting on openness and protocol standardization.

None of them are wrong. Your choice depends on where your organization lives today—and where you want it to be in 2027.

Here’s My Honest Take

The adoption of agentic AI—evidenced by marketplace growth projections and partner ecosystem expansion—signals that enterprises are moving from experimentation to production deployment.

Fifteen months ago, the conversation was “generative AI or not.” Today, it’s “which hyperscaler’s agent architecture aligns with our strategy?” That’s progress. But it also means the clock is ticking.

The gap between experimentation and real deployment is widening. Organizations that figure out governance, lifecycle management, and internal marketplaces now won’t just be faster—they’ll build moats their competitors can’t cross.

Where’s your organization in this journey? Are you still in pilot mode, or have you started thinking about what production-scale agent governance actually looks like?

I’m genuinely curious. Drop a comment.

From MLOps to LLMOps to AgentOps: Building the Bridge to Autonomy

We didn’t just upgrade models—we changed the discipline. What used to be “model lifecycle management” is now autonomy lifecycle management. And with that, enterprises are facing a truth most haven’t yet operationalized: we now live in three overlapping worlds—Traditional AI, GenAI, and Agentic AI—each with its own workflow logic, tooling, and governance.

In traditional MLOps, workflows were deterministic: data in, prediction out. Pipelines were clean, measurable, and managed through platforms like MLflow, Kubeflow, BentoML, or Evidently AI. We focused on reproducibility, accuracy, and drift detection—predictable systems built for static decisions.

Then came LLMOps, and the equation broke. We moved to unstructured data, prompts, RAG, and safety filters. Non-deterministic outputs meant no two runs were ever the same. Suddenly, we were tracking token costs, hallucination rates, latency SLOs, and human feedback loops in real time—using stacks like LangChain, LlamaIndex, PromptLayer, Weights & Biases, and Credo AI.

Now we’re entering AgentOps—the autonomy layer. Systems act, reason, and collaborate through orchestrators like LangGraph, CrewAI, or AutoGen. AWS is already positioning AgentCore (on Bedrock) as the enterprise runtime—agents with persistent memory, context, and real-time observability. But the architecture shift isn’t just technical; it’s organizational. The winning model is “federated”: specialized teams with unified observability across all three layers—AI, GenAI, and Agentic AI.

When I sit with exec teams, I see the same pattern: most can build great models, but few can run parallel operational capabilities at once. And that’s the new muscle—keeping deterministic, generative, and agentic systems aligned under one governance fabric.

What makes the difference isn’t the flashiest demo; it’s boring excellence—clear SLOs, version control, cost discipline, and behavioral guardrails. That’s how we turn agents into trusted co-workers, not expensive chaos engines.

So here’s the question I leave leaders with: If your org had to strengthen just one layer this quarter—MLOps predictability, LLMOps safety, or AgentOps autonomy—where would you start, and how ready is your team to run all three in parallel?

Data Mesh was step one. 2026 belongs to agent ecosystems.

I used to think “more catalogs, better lakes” would get us there. Then I watched agents start acting—not just assisting—and realized our data products weren’t ready for that responsibility.

Here’s the simple truth I’m seeing with executive teams: bad data becomes bad decisions at scale. If our contracts, SLOs, lineage, and internal marketplaces are weak, agents will scale the wrong thing—errors—at machine speed. That’s a board-level conversation, not an IT complaint.

What changes in practice?
We evolve the data operating model from “publish & pray” to agent-grade: data products with p95 latency targets, explicit access scopes, and traceable provenance. Hyperscalers are now shipping real agent runtimes (memory, identity, observability—and billing), which means the economics and accountability just got very real.

How I’m approaching it with leaders:

  • Certify data products for agents. Each product has an owner, SLOs (latency/freshness), and mandatory provenance. If it can’t meet its SLOs, it doesn’t feed agents—full stop.
  • Enforce least privilege by skill. Approvals are tied to the actions an agent can perform, not just the datasets it can see.
  • Make observability a product. Trace every call (inputs, tools, sources, cost, outcome). No trace, no production.

Practical next steps:
Start by mapping your top 10 data products to target agent skills and auditing them. Set SLOs. Assign owners. Then pick one product—implement policy-aware access and lineage capture, record evaluation traces for every agent call, and scale it. Afterwards, launch an internal Agent Marketplace that connects certified skills and certified data products, with change gates based on risk tier.

KPIs I push for:

  • % of agent invocations served by certified data products meeting SLOs (with recorded lineage)
  • $/successful agent task at target quality and latency
  • Incident rate per 1,000 runs (blocked vs executed)

Behind the scenes, the shift that surprised me most wasn’t technical—it was managerial. The winning teams treat this as work redesign: new ownership, new runbooks, new kill criteria. When we do that, agents unlock speed and resilience. When we don’t, they magnify our mess.

If you had to fix just one weak link this quarter—SLOs, provenance, or access controls—which would it be, and why?

Ready for EU AI Act? Your framework probably isn’t. Here’s why.

I’ll be honest—I’ve watched too many smart teams stumble here. They bolt GenAI onto legacy model risk frameworks and wonder why auditors keep finding gaps. Here’s what I’m seeing work with CDOs navigating the EU AI Act:

You need segmentation, not standardization. Traditional ML, GenAI, and agents carry fundamentally different risks. Treating them the same is like using the same playbook for three different sports.

Start with an AI Management System — ISO/IEC 42001 for structure, 42005 for impact assessments, 42006 for auditability. Map it to NIST’s GenAI Profile + COSAIS overlays. This isn’t box-checking; it’s how you govern at scale without chaos.

Then segment your controls: ML needs drift monitoring and data quality checks. GenAI needs prompt-injection defenses and hallucination tracking. Agents? Autonomy caps, tool allow-lists, human-in-the-loop gates, sandboxed execution, full action logs. Use OWASP’s LLM Top 10 — your security team already speaks that language.

On EU AI Act compliance: GPAI obligations are phasing in now. Inventory your systems, classify them (general-purpose, high-risk, other), run fundamental rights impact assessments for high-risk deployers, then choose your conformity path. Don’t wait.

Make it operational. Name control owners. Set SLAs. Track what matters—prompt-injection incidents, drift rates, task success, hallucination coverage, adoption rates, cycle-time savings. Require evidence (model cards, eval runs, logs) before promotion. Gate agent autonomy upgrades.

And frankly, treat anonymization as something you prove, combining technical (DP, SDC, k-anon) with organizational and process controls. Keep DPIA’s records updated per EDPB/ICO guidance.

If you’re piloting agents: cap autonomy first, scale second.

The teams moving fastest with focus aren’t skipping controls—they built the right ones from day one.

Which KPI tells you the most about your AI program’s health—risk metrics, performance indicators, or value creation? I’m especially curious what agent pilots are tracking beyond the basics.

EU AI Act´s General-Purpose AI Models (GPAI) Rules Are Live: How to prove Compliance next months.

EU obligations for general-purpose AI kicked in on 2 Aug 2025. Models already on the market before 2 Aug 2024, must be fully compliant by 2 Aug 2027 – but boards won’t wait that long.

Over the past few weeks I’ve sat with product, legal, and model teams that felt “compliance-ready” … until we opened the evidence drawer. That’s where most programs stall. The good news: the playbook is clear now. GPAI Code of Practice (10 Jul 2025) gives a pragmatic path, and the Guidelines for GPAI Providers (31 Jul 2025) remove a lot of scope ambiguity. Voluntary? Yes. But it’s the fastest way to show your house is in order while standards mature.

Here’s how I’d tackle this —no drama, just discipline. First, align on who you are in the Act (provider vs. deployer). Then make one leader accountable per model and wire compliance into your release process.

My advice, Companies should:

  • Gap-assess every in-scope model against the Code. Do you have a copyright policy, a training-data summary, documented evals, and a working view of downstream disclosures? If any of those are fuzzy, you’re not ready.
  • Stand up model cards and incident logs; add release gates that block launch without evidence. Map risks to your cyber program using CSF 2.0 so Security and Audit can speak the same language.
  • Run an internal GPAI evidence audit. Publish an exec dashboard with: % of models with complete technical files and disclosures, incident MTTD/MTTR, and time-to-close regulator/customer info requests.

A quick reality check: big providers are splitting—some signalling they’ll sign the Code, others not. That’s strategy. Your advantage (especially if you’re an SME) is disciplined documentation that turns “we promise” into procurement-ready proof.

My rule of the thumb: if the CEO can’t see weekly movements on documentation completeness and incident handling, you are in pilot land – no matter how advanced the model sounds.

What would you put on a one-page dashboard to convince your CFO – and your largest EU customer – that your GPAI program in truly under control?

Agentic Operating Models: from Pilots to P&L

We’re past the demo phase. Boards are asking a harder question: how do human-plus-agent workflows show up in cash flow—this quarter? There is a clear answer: The winners don’t “add an agent”; they redesign the work. That means owners, SLAs, guardrails, and value tracking—weekly. Not glamorous, just effective.

Here’s the short playbook I’d bring to the next ExCo:

  • Make Agents products. Name a product owner, publish SLAs (latency, accuracy, human-override rate), and set chargeback so value—and cost—land in the P&L.
  • Design human+agent flow, end-to-end. Pilots fail for organizational reasons. Tie every pilot to a customer metric and a service level from day one.
  • Build guardrails you can audit. Map risks to NIST’s Cyber AI Profile; log decisions, provenance, and incidents. “Trust” that isn’t evidenced will stall at Legal.

Does it pay?  Signals are real but uneven. A European bank modernization program cut 35-70% cycle time with reusable “agent components.” In KYC/AML, agent “factories” show 200-2000% productivity potential when humans supervise at scale. Klarna’s AI assistant handles  ~1.3M monthly interactions (~800 FTEs) with CSAT parity. Yet BCG says only ~5% are truly at value-at-scale, and Gartner warns ~40% of agentic projects could be scrapped by 2027. Operating model discipline determines who wins.

If I had 90 days:

  • 30: Inventory top 5 agent candidates; assign owners; baseline SLAs and override rates.
  • 60: Stand up an Agent Review Board (CIO/CDO/GC/CISO); add release gates and rollback.
  • 90: Ship two agents to production; publish a value dashboard (savings, cycle time, SLA hit rate) and decide scale/retire.

A candid note on risk: labor anxiety and model drift will erase ROI if we skip change management and runtime oversight. Bring HR and the 2nd line in early, and rehearse incidents like you would a cyber tabletop.

If we can’t show weekly value, SLA adherence, and audit-ready evidence, we’re still in pilot land—no matter how advanced the model sounds.

What would make your CFO believe – tomorrow – that an agent belongs on the P&L?

Agentic Mesh or Just Another Buzzword? Cutting Through the Hype

Let’s be honest: most of us have sat through AI demos that looked impressive… and then quietly died in the pilot graveyard. Why? Because smarter models alone don’t create enterprise value. The real shift is moving from shiny pilots to system-level architectures—what McKinsey calls the Agentic Mesh.

I’ve seen this firsthand. When teams focus only on “better models,” they often miss the harder (and less glamorous) work: wiring agents together, defining guardrails, and making sure actions are auditable. That’s where scale either happens—or fails.

What are we learning as an industry?

  • Models matter, but architecture and process discipline matter more.
  • Standards like MCP and A2A are becoming the “USB-C of AI,” cutting down brittle integrations.
  • Governance isn’t optional anymore—ISO/IEC 42001, NIST AI RMF, and “human-on-the-loop” ops are quickly becoming the baseline.
  • We have to treat agents like digital colleagues: assign roles, permissions, even offboarding procedures.
  • And without proper observability—AgentOps, logs, kill-switches—autonomy can turn into automated chaos.

For executives, here’s what I’d do today if I were scaling this in your shoes:

  1. Name it. Create a platform team that owns the “mesh”—protocols, policy engines, memory hubs, observability.
  2. Start small, but measure big. Choose a few revenue- or cost-linked workflows, run shadow/canary pilots, and track hard KPIs.
  3. Bake in governance early. Build an agent registry, enforce least-privilege access, and red-team agents before production.
  4. Scale with discipline. Treat agent patterns like products—documented, reusable, and measured.

Here’s my takeaway: the winners won’t be those with the smartest model, but those who can turn agents into an integrated, trusted system—a digital workforce that’s secure, observable, and genuinely valuable.

👉 What’s been your biggest blocker moving from pilots to scaled AI systems—technology, governance, or people?

Beyond Chatbots: Why Agentic AI Will Redefine Your Operating Model

We’re moving beyond the chatbot phase into something much more transformative: autonomous AI agents that can actually get work done. Agentic AI isn’t just another tool to bolt onto existing processes. It’s fundamentally changing how businesses operate. AI agents can plan their own workflows, make decisions across multiple systems, and interact with everything from APIs to documents to other agents.

But here’s what I’ve learned from different implementations in clients: the winners aren’t just deploying agents. They’re rethinking their entire operating model.

What Actually Works

The companies getting real results are doing a few things differently. First, they’re designing workflows with agents in mind from the ground up, not trying to retrofit existing processes. Although, some companies are still working through cultural and change management barriers, focusing on measurement, and strong leadership to realize real value from AI technologies. This makes sense when you see it in action.

Second, they’re taking governance seriously. You need clear boundaries on what agents can do, audit trails, and fallback procedures. The “Wild West” approach doesn’t work at enterprise scale.

Third, they’re building for interoperability. The real value comes when agents can work together through standardized protocols (e.g., A2A, MCP). The emerging orchestration layers are making this possible. They are both critical enablers for scaling agent ecosystems safely.

The ROI Reality Check

The consulting firms love to throw around impressive numbers, and I’ve seen some compelling case studies. They point to measurable improvements intime-to-market and efficiency. But the real question is whether these gains hold up when you scale beyond pilot projects.

From what I’m seeing, the answer is yes—but only if you’re willing to rethink roles and responsibilities. We’re talking about new job categories: people who can design agent workflows, architects who can orchestrate human-AI collaboration, product owners who understand both business needs and AI capabilities.

The Strategic Question

If you’re a CDO or digital transformation leader, you’re probably already getting questions about this from your board. The technology is moving fast, but the organizational change is the real challenge.

The question isn’t whether agentic AI will transform how we work—it’s whether your organization will be ready when it does. Are you building the capabilities to orchestrate humans and AI agents effectively? Because that’s where the competitive advantage will come from.

What’s your experience been with autonomous AI agents? I’m curious to hear how other organizations are approaching this transition.

The New Cold War is Digital – and it’s Already Reshaping Global Power

From artificial intelligence to quantum tech, we’re witnessing a seismic shift in how countries define influence and sovereignty. This isn’t just about innovation anymore — it’s about values, governance, and global positioning.

As someone deeply interested in tech policy and diplomacy, I’ve been reflecting on how major powers are approaching this transformation. Here’s a high-level look at how governments are navigating this new digital landscape:

Key Global Approaches to Tech Governance

  • EU: Leading the way with the AI Act — a bold, risk-based framework grounded in ethics and digital rights.
  • US: Prioritizing innovation with executive orders and a $1.7T bioeconomy push — focused on resilience, competition, and security.
  • China: Driving state-led initiatives like Made in China 2025 and massive quantum R&D for tech sovereignty.
  • UK: Taking a flexible, pro-innovation stance while fostering transatlantic cooperation.

Strategic Tech Domains to Watch:

  • AI Governance: From the EU’s regulatory leadership to China’s national security-driven controls, the race to shape AI norms is on.
  • Cybersecurity & Digital Sovereignty: NIS2 in the EU, new US cyber strategy, and China’s walled cyberspace — all aiming to secure digital autonomy.
  • Biotech & Biosafety: With the US and EU aligning bio-innovation to health and sustainability, we’re seeing biotech become a strategic pillar, not just a science issue.
  • Quantum Tech: Quantum is no longer future talk — the US, EU, and China are investing billions in what could be tomorrow’s defining tech advantage.

Multilateral Moves that Matter:

  • EU–US Trade and Tech Council (TTC) is shaping AI and semiconductor coordination.
  • UNESCO, OECD, G7: Working on global ethical frameworks.
  • Digital Partnerships (EU–Japan, UK–Singapore, etc.) show a real appetite for trusted, cross-border digital cooperation.

What’s the Common Thread?

Despite differences in approach, there’s a shared recognition that the future must be built on:

  • Ethical AI
  • Sustainable innovation
  • Strategic investment
  • Digital rights and accountability

A call to Action:

We need governance models that are collaborative, values-driven, and future-proof. The digital world is too important to be left to chance or rivalry alone.

Let’s build a digital future that supports democracy, development, and dignity!.

Curious to hear your thoughts: How do you see your country, company, or community navigating this new era?