Your AI Is Real-Time. Your Data Operating Model Isn’t (Yet).

Let’s be honest: many of us are trying to run 2025 AI ambitions on 2010 data habits. Nightly batches, opaque KPIs and committee-driven governance don’t survive contact with agents, RAG and copilots.

The more I work with transformation leads, the more I see two patterns emerge again and again:
1 Real-time velocity and semantically-rich data are no longer optional.
2 Federated production + centralized semantics is the only model that really scales.

This forces a redesign of the Data Operating Model (DOM):

  • Instead of “we have a data lake, we’re fine”, we need an event driven + streaming + semantics fabric.
  • Events, not just ETL.
  • A semantic layer where metrics, dimensions and policies live once and are reused everywhere.
  • RAG and agents consuming governed semantics and live APIs, not random tables.

And the “data mesh vs central model” wars? They’re a distraction. Data mesh delivers measurable outcomes.

What actually works is:

  • Federated production: domains own their data/real-time data products.
  • Centralized semantics: a small central team owns the shared language of the business, metrics and the policies around it.
  • Governance becomes computational: contracts, lineage and rules in code, not PDFs nobody reads.
  • Semantic layers are becoming the governance firewall, resolving data chaos. The semantic layer emerges as the critical “universal translator” between raw data and analytical/AI systems.
  • Data/AI/Analytics Architecture Convergence on Six Pillars: (1) Ingest/Stream, (2) Prepare/Transform, (3) Define/Model (semantic layer), (4) Store/Persist, (5) Integrate/Orchestrate, (6) Deliver/Share. The “Define/Model” stage—semantic layers + metadata management—is the control point for AI governance.

If I had to prioritise the next 12–18 months in a DOM, I’d push for three moves:
Stand up 3–5 domain teams with clear P&L-linked data products.
Create a semantic council with the authority to say “no” to broken KPIs and unsafe policies.
Fund based on outcomes: latency, reliability, AI use-case adoption and reuse of shared semantics.

The hard question is “where do we start federating ownership without losing a single source of truth on meaning and controls”?

I’d love to learn from others here:
Where is your DOM actually stuck today — events, semantics, domain ownership, or governance?

Data Mesh was step one. 2026 belongs to agent ecosystems.

I used to think “more catalogs, better lakes” would get us there. Then I watched agents start acting—not just assisting—and realized our data products weren’t ready for that responsibility.

Here’s the simple truth I’m seeing with executive teams: bad data becomes bad decisions at scale. If our contracts, SLOs, lineage, and internal marketplaces are weak, agents will scale the wrong thing—errors—at machine speed. That’s a board-level conversation, not an IT complaint.

What changes in practice?
We evolve the data operating model from “publish & pray” to agent-grade: data products with p95 latency targets, explicit access scopes, and traceable provenance. Hyperscalers are now shipping real agent runtimes (memory, identity, observability—and billing), which means the economics and accountability just got very real.

How I’m approaching it with leaders:

  • Certify data products for agents. Each product has an owner, SLOs (latency/freshness), and mandatory provenance. If it can’t meet its SLOs, it doesn’t feed agents—full stop.
  • Enforce least privilege by skill. Approvals are tied to the actions an agent can perform, not just the datasets it can see.
  • Make observability a product. Trace every call (inputs, tools, sources, cost, outcome). No trace, no production.

Practical next steps:
Start by mapping your top 10 data products to target agent skills and auditing them. Set SLOs. Assign owners. Then pick one product—implement policy-aware access and lineage capture, record evaluation traces for every agent call, and scale it. Afterwards, launch an internal Agent Marketplace that connects certified skills and certified data products, with change gates based on risk tier.

KPIs I push for:

  • % of agent invocations served by certified data products meeting SLOs (with recorded lineage)
  • $/successful agent task at target quality and latency
  • Incident rate per 1,000 runs (blocked vs executed)

Behind the scenes, the shift that surprised me most wasn’t technical—it was managerial. The winning teams treat this as work redesign: new ownership, new runbooks, new kill criteria. When we do that, agents unlock speed and resilience. When we don’t, they magnify our mess.

If you had to fix just one weak link this quarter—SLOs, provenance, or access controls—which would it be, and why?